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Learning multiple tasks

= Problem: Spam detection
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Learning multiple tasks

= Approach 1: single filter (classifier) for all users
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= Deficiency: some users may have different behaviors ®
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Learning multiple tasks

= Approach 2: One filter (classifier) for each user

= Deficiency: some users may have similar behaviors and we are ignoring it ®
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Learning multiple tasks

= Multitask Learning: learn all tasks simultaneously while taking
tasks relationship into the learning process
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Learning multiple tasks

Definition:

Multitask Learning (MTL) is a machine learning paradigm which seeks
to improve the generalization of a learning task by using auxiliary
information from another related tasks [Caruana, 1997].

Unlike traditional learning, where each task is learned independently,
here all tasks are learned simultaneously and information about its
relationship is also considered.
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Traditional single task learning vs MITL

Single task learning
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Mathematical definition of MTL

Summation over

‘ all tasks

m Nk
min > Zlf(fk(gk,xk)d’/i) + R(©)

k=1 ' ‘ Regularization
to enforce tasks

sharing

Empirical risk for
the k-th task
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Other areas related to MTL

= Multiple-Output Regression:

Differences:

"1 a) Independent single response regression model (no
Z — Z Ozxi)2, regularization added);
n
k=1 B b) Inputs (covariates) are the same for all regressors
(X 1=X 2=..=X_m)

= Multilabel Classification:
— Similar to multiple-output regression, but for classification problems.
— Binary relevance transformation

= Transfer Learning:

Transfer Learning Multitask Learning
Task | | Task
1 3
Source Target boX
Task Task Task Task
2 4
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Assessing Alzheimer’s Disease Progression

= Alzheimer’s Disease (AD) is a severe neurodegenerative
disorder that results in loss of mental function due to the
deterioration of brain tissue [Khachaturian, 1985]

= Early diagnosis of AD is key to the development, assessment,
and monitoring of new treatments for AD

= Cognitive scores are used to measure patient cognitive
capabilities such as attention, memory, language and visuo-
constructional functions

Early Alzheimer's

= Disease stage can be characterized based on such cognitive
score
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Late Alzheimer's
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Assessing Alzheimer’s Disease Progression with MTL

= Jointly prediction of five cognitive scores based on properties of
regions-of-interest (ROIs) in the brain

= Considered cognitive scores:
— Alzheimer’s Disease Assessment Scale — cognitive total score (ADAS)
— Mini Mental State Exam score (MMSE)

— Rey Auditory Verbal Learning Test (RAVLT)
 Total score (RAVLT-TOTAL)
* 30 minutes delay score (RAVLT-30)

— RAVLT recognition score (RECOG)

= Magnetic resonance imaging (MRI), positron emission tomography
(PET), along with other biomarkers

= Data from “The Alzheimer’s Disease Neuroimaging Initiative” (ADNI)
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Assessing AD Progression: MTL model

= MTL with sparse group-structured penalty (MT-SGL)
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tasks penalty penalty

X. Liu, A.R. Goncalves, P. Cao, D. Zhao, A. Banerjee. Modeling Alzheimer's disease cognitive scores using

multi-task sparse group lasso. Computerized Medical Imaging and Graphics, vol. 66, 2018.
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AD Progression with MTL: Results

= 816 patients, 92 ROIs (1 to 4 features per ROI): 327 features

= Results (relative RMSE improvement):
— Over Ridge Regression: ~20%
— Over Group Lasso: 5% ~ 6%
— Improvement over other MTL methods

= Researchers are not only interested in more accurate cognitive

scores prediction:
— Identify the brain areas more affected by the disease at each stage

= Interpretable models are preferred
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Relevant ROIs identified by MT-SGL

(a) Left-Hemisphere: Left Middle (b) Right-Hemisphere: No relevant ROI
Temporal and Left Entorhinal. selected and Right Entorhinal.

(c) Subcortical: Left Inferior Lateral Ventricle, Left Cerebellum
Cortex, Left Hippocampus, Left Amygdala, Right Inferior Lateral
Ventricle, Right Hippocampus, Right Amygdala.
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Cancer Survival Prediction

= Goal: Leverage MTL to share information across anatomically
distinct cancer types

= OQur hypothesis is that as stark as the differences between
cancers may be, there exist underlying processes that are
common, even across disparate cancer types

= We investigate whether MTL classifiers can provide improved
predictions of 5-year survival

A.R. Goncalves, A.P. Sales, B. Soper, M. Nygard, J. Nygard. Improving Survival Predictions via

Multitask Learning Across Cancer Types. Machine Learning for Health Care. 2018 (Submitted)
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Cancer Survival Prediction: Data

= SEER public dataset (from National Cancer Institute — NCI)

= Only cancers topologies for which human papillomavirus infection (HPV) is a
known risk factor

= Considered cases diagnosed during the period of 2004 to 2014, totaling
27586 cancer cases

= Dataset consists of 16 covariates (mostly categorical) and the binary
outcome tells if a patient has survived for at least 5 years

= Data is right-censored: patients dropped out the study before 5-years of
follow-up

= Tasks were split in three different manners, based on anatomical groupings
of cancer types.
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Cancer Survival Prediction: MTL model

= Model is an extension of the model proposed in Goncalves et. al
2016, to handle right-censored data using IPCW adaptation

T

1
W = arg m1n$1 th[l (yi, xt, wy) + Altr(WQWT) dlog |2 + A2 ||€2]1

= Jointly learn the matrix of tasks parameters (W) and a matrix
that captures the dependence among tasks (Omega)

= Weights wfare computed by IPCW to account for censored data

= MTL model is compared against STL and Pooled models
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Cancer Survival Prediction: Results
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Figure 1: ‘Per-task basis’ comparison. Brier scores for STL, MTL, and pooled classifiers for
the three task definitions: (a) Level 1 (11 tasks), Level 2 (7 tasks), Level 3 (4 tasks). Each
boxplot contains as many points as there are tasks, with each point being the mean Brier
score for that task over the 30 train/test runs.
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Concluding remarks

= Multitask learning is a powerful machine learning paradigm
= Many machine learning problems can be cast to a MTL problem

= MTL benefits the most when multiple related models are to be
trained and relative small (considering model complexity)
datasets are available
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